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Abstract. We modelled forest composition and structural
diversity in the Uinta Mountains, Utah, as functions of satellite
spectral data and spatially-explicit environmental variables
through generalized additive models. Measures of vegetation
composition and structural diversity were available from ex-
isting forest inventory data. Satellite data included raw spec-
tral data from the Landsat Thematic Mapper (TM), a GAP
Analysis classified TM, and a vegetation index based on raw
spectral data from an advanced very high resolution radiom-
eter (AVHRR).

Environmental predictor variables included maps of tem-
perature, precipitation, elevation, aspect, slope, and geology.
Spatially-explicit predictions were generated for the presence
of forest and lodgepole cover types, basal area of forest trees,
percent cover of shrubs, and density of snags. The maps were
validated using an independent set of field data collected from
the Evanston ranger district within the Uinta Mountains. Within
the Evanston ranger district, model predictions were 88% and
80% accurate for forest presence and lodgepole pine (Pinus
contorta), respectively. An average 62% of the predictions of
basal area, shrub cover, and snag density fell within a 15%
deviation from the field validation values. The addition of TM
spectral data and the GAP Analysis TM-classified data con-
tributed significantly to the models’ predictions, while AVHRR
had less significance.

Keywords: Accuracy assessment; AVHRR; Forest attribute
model; Generalized additive model; Geographical Informa-
tion Systems; Landsat Thematic Mapper; Vegetation model-
ling.

Abbreviations: AIC = Akaike’s Information Criterion;
AVHRR = Advanced Very High Resolution Radiometer; DBH
= Diameter Breast Height; DMA = Defense Mapping Agency;
GAM = Generalized Additive Model; GLM = Generalized
Linear Model; FIA = Forest Inventory and Analysis; GIS =
Geographical Information Systems; GPS = Global Position-
ing System; PCC = Percent correctly classified; RMS = Root
Mean Square error; TM = Thematic Mapper; UTM = Univer-
sal Transverse Mercator.
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Introduction

Recent advances in statistical modelling techniques
and geographical tools, such as remote sensing and
geographical information systems (GIS), have increased
the opportunities for the delineation and analysis of
vegetation distribution patterns. Numerous studies have
demonstrated the use of statistical models to understand
and display how plant species are distributed throughout
the environment (e.g. Austin et al. 1990; Davis & Goetz
1990; Austin et al. 1994), yet the unpredictability of
natural ecosystems, along with the dramatic influence
of human disturbance, has made it very difficult to draw
conclusions about vegetation distribution patterns and
relationships to environmental conditions. For example,
research has demonstrated that the past assumption that
vegetation responds in a bell-shaped (Gaussian) pattern
along environmental gradients is not true for most spe-
cies (Mueller-Dombois & Ellenberg 1974; Austin &
Cunningham 1981; Austin 1987). Many statistical mod-
els being applied to vegetation hold this assumption and
therefore tend to misrepresent true distributional pat-
terns (e.g., ordination methods; Austin & Noy-Meir
1971; Austin 1985). Other statistical models, such as
generalized additive models (GAMs), are more flexible
and better suited to handle nonlinear relationships of
vegetation to environmental gradients (Hastie &
Tibshirani 1990; Yee & Mitchell 1991; Austin & Meyers
1996).

GIS and remote sensing technology have made it
possible to identify, analyze, and classify extensive
tracts of vegetation using satellite spectral data and
digital environmental data. Studies have shown the com-
plementary effects of integrating environmental data
with satellite spectral data for vegetation classification
(Loveland et al. 1991; Homer et al. 1997), stratification
(Franklin et al. 1986) and predictive modelling (Frank
1988; Davis & Goetz 1990; Moisen & Edwards 1999).
GIS tools allow such integration, storage, and spatial
analysis of multiple layers of data and provide methods
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for generating georeferenced maps. When analyzing
large areas, questions arise whether to use a readily
available satellite data source, such as 1.1km resolu-
tion, National Oceanic and Atmospheric Administra-
tion’s (NOAA) advanced very high resolution radiom-
eter (AVHRR) or a higher resolution data source, such
as 30-m, multi-spectral, Landsat Thematic Mapper (TM)
imagery which is more expensive and requires exten-
sive storage space.

Although the development of large-scale analytical
tools has increased efficiency, most research has fo-
cused on dominant vegetation features that are distin-
guishable from satellites or that represent climax or
seral types most influenced by environmental param-
eters. But how do we analyze the understory and com-
position of forested habitats that are not directly visible
from satellites? Studies have looked at the ability of
satellites to capture reflectance values of understory
components (Stenback & Congalton 1990), basal area
and leaf biomass (Franklin 1986),  and stand density and
height (Horler & Ahern 1986), but in general, further
research was suggested.

This study outlines an approach for delineating for-
est composition using GAMs, remote sensing data, and
GIS tools. Our overall objective was to determine the
ability of these techniques, when integrated, to model
and map attributes of forest structure in the Uinta Moun-
tains of Utah, and at the same time develop a systematic
approach for application of these techniques to other
forested landscapes. Specifically, our objectives were
to:
(1) develop spatially explicit predictive models of forest

attributes using GAMs, integrating field-collected
forest resource inventory data with satellite and dig-
ital environmental data;

(2) determine the effects of three different forms of
imagery (Landsat TM, AVHRR, and a classified
TM-based vegetation cover map) on model predic-
tive capabilities; and

(3) test how well the models predict at a local level using
an independent set of field data.

Methods

Study area

Data for model-building came from a region of
seven National Forest Ranger Districts encompassing
the east-west mountain range of the Northern Utah
Mountain Ecoregion (hereafter the Uinta mountains).
The seven ranger districts together cover approximately
1000000 ha of forest. The Uintas are characterized by
an east-west orientation, and have an approximate length

of 241 km and a width of 48 to 64 km. Elevation ranges
from ~1700 m to a high of ~4000m. The area contains
conspicuously deep, v-shaped canyons on the south side
of the range and less pronounced canyons on the north
side of the range. The geology consists mainly of a
sedimentary layer of sandstone and limestone in the
forested areas, glacial deposits in the valleys and
drainages, and Precambrian quartzite in the high eleva-
tion, exposed regions. The climate consists of long
winters and high summer precipitation which is mainly
a function of elevation, latitude, and storm patterns from
the west and the Gulf of Mexico, with local effects from
slope exposure and/or aspect (Mauk & Henderson 1984).

The distribution of vegetation in the Uinta Moun-
tains is highly influenced by topographic position and
geographic location. Pinus contorta (Lodgepole pine) is
the dominant vegetation type, ranging from 1700 to
3000 m elevation. At elevations between 2400m and
3000 m, lodgepole is mixed with Populus tremuloides
(aspen), with a few homogenous aspen stands at lower
elevations. As elevation increases, lodgepole forests are
gradually replaced by Picea engelmannii-Abies lasio-
carpa (spruce-fir) forest types and are frequently inter-
spersed with large patches of wet and dry meadows.
Other forest types include Pinus edulis-Juniperus
osteosperma (pinyon-juniper) at lower elevations on the
northeastern slope, Pseudotsuga menziesii (Douglas-
fir) on steep, protected slopes, and Pinus ponderosa
(ponderosa pine) forests on exposed slopes on the south
side of the range (Cronquist et al. 1972). Human impacts
on natural successional processes within the Uintas
include timber management and wood collection, fire
suppression, intensive grazing, recreation, and intensive
harvesting of lodgepole pine forests for railroad tie (=
railway sleeper) production in the early 1900’s.

Data

Response variables

Forest attribute data were extracted from the U.S.
Forest Service Rocky Mountain Research Station, Inte-
rior West Resource Inventory, Monitoring, and Evalua-
tion Program (IWRIME) database (Anon. 1994). Five
forest attributes were chosen as response variables for
this study: two binomial (forest presence and Pinus
contorta  presence) and three continuous variables (live
basal area, percent shrub cover, and snag density) (Ta-
ble 1). Forest was defined as land, 0.4 ha or more in size,
having at least 10% tree cover. A location was classified
as lodgepole forest type when the majority of tree cover
in a forested site was lodgepole. Live basal area was
calculated from measured diameter at breast height
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(DBH) of timber trees 2.5 cm or greater DBH, and a sum
of diameter at root collar for woodland trees > 7.6 cm.
Percent shrub cover was derived from total shrub cover
of three different height classes, calculated by summing
the midpoints of each specified cover class (< 5%, 5-
25%, 25-50%, 50-75%, or 75-100%) measured in the
field. Snag density was a measure of salvable and
nonsalvable timber snags greater than 10.2 cm DBH,
per 0.4 ha plot. Snags were counted within a 25.3 m
radius and multiplied by 2 for a 0.4 ha estimate. For
further information on FIA sampling and measurement
procedures, accuracy standards, and other sampled pa-
rameters, refer to USDA (Anon. 1994).

Explanatory variables

The selection of explanatory variables for modelling
was based on a priori ecological assumptions and pub-
lished literature on vegetation responses to environmen-
tal gradients, and the availability of appropriate digital
coverages within the study area. Each initial model
included total annual precipitation, three topographic
variables (elevation, aspect, and slope), geology, three
geographical location variables (UTM easting and north-
ing coordinates and a discrete variable of ranger dis-
trict), and one of three types of satellite spectral data
(AVHRR, Landsat TM, or a classified Landsat TM-
based vegetation cover map) (Table 2).

Precipitation data came from a downscaling of coarse-
scale Prism (Daly et al. 1994) climate maps (N. Zim-
mermann, unpubl. data). Elevation was extracted from
the Defense Mapping Agency (DMA), 90-m resolution,
digital elevation models. Aspect and slope data were
derived from the DMA using functions in the GRID
module of ArcInfo GIS (ESRI Inc., Redlands, Califor-
nia). From aspect, azimuth in degrees was transformed
into three different variables. The first variable (Asp1)
was derived from a look-up table of slope and aspect
providing estimates of relative total annual solar radia-
tion normalized at 41 degrees latitude (Swift 1976). The
second variable (Asp2) was a discrete variable sepa-
rated into categories of degrees. The categories range
from 1 to 9, with category 1 as north-facing aspect,

moving clockwise to category 8 at northwest aspects.
Category 9 included slopes less than five percent. The
third aspect variable (Asp3) was a symmetric radiation
wetness index transformed from aspect degrees (Roberts
& Cooper 1989).

Geology data were obtained from a digitized cover-
age of a 1:500000 stable base mylar of the geology of
Utah (Hintze 1980). Three groups of discrete variables
were derived from the geology coverage by combining
features into classes based on nutrient quality (1-sand-
stone and limestone, 2-sedimentary, 3-alluvial), time
era (1-Precambrian, 2-Mississippian to Euocene, 3-Al-
luvium), and rock type (1-sedimentary, 2-alluvial) (see
Frescino 1998: Appendix A1).

Geographic location was represented by the Univer-
sal Tranverse Mercator (UTM) easting and northing
values. The last explanatory variable was a discrete
variable with seven components representing the seven
National Forest Ranger Districts (1-Evanston, 2-Moun-
tain View, 3-Flaming Gorge, 4-Vernal, 5-Roosevelt, 6-
Kamas, 7-Duchesne). Although not ecologically de-
fined, the districts have characteristic boundaries which
are associated with geographical features.

Three types of satellite data were compared in this
study: TM-based classified imagery; AVHRR; and un-
classified Landsat TM. The TM-based, classified map
of 36 classes was developed from a georeferenced mo-
saic of TM scenes (see Homer et al. 1997 for details).
For this study, these 36 classes were reclassified to
match IWRIME forest type classes, resulting in a total
of 8 categories (Frescino 1998: Appendix A3). A binary
variable of forest and non-forest types was also classi-
fied for use in the model predicting forest presence/
absence. The AVHRR data source used was the normal-
ized difference vegetation index (hereafter AVHRR)
(Loveland et al. 1991). The third type of satellite data
was unclassified TM. Only bands 3 (Red), 4 (Near-
infrared), and 5 (Mid-infrared) were used in the TM-
based models. Visible bands, 1 and 2, and mid-infrared
band 7 were highly correlated with bands 3, 4, and 5,
and were removed from the analysis.

Each digital coverage was rescaled within the GIS to
a cell size of 0.4 ha using the cubic convolution algo-

Table 1. Summary of response variables for modeling forest attributes in the Uinta Mountains, Utah. Data collected from 0.4 ha-size
plots following procedures and definitions in Anon. 1994.

Forest attribute Type Description Distribution

Forest presence Binomial > 10% stocking (> 61 m wide) Pr = 0.77
Presence of Pinus contorta Binomial Majority of forest cover Pr = 0.31
Basal area (m2/ha) Continuous Area of trees at 1.37 m basal Range:  0  to 70

  (trees > 2.5 cm DBH) Median: 16
Shrubs (%) Continuous Sum of total cover from upper, mid, Range:  0  to   92

  and lower layers Median: 15
Snag density Continuous Total salvable and non-salvable Range:  0  to 248

  (snags > 10.2 cm  DBH) Median:  5
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rithm for the continuous data (DMA data, precipitation,
temperature, AVHRR, and TM data), and the nearest
neighbor algorithm for the discrete data (geology, the
classified cover-map, and district), in order to corre-
spond with the resolution of the forest inventory data
(ArcInfo GIS, ESRI Inc., Redlands, California).

Model development and selection

The 447 model-building points were intersected
through each digital explanatory layer and the value at
each cell extracted for use in modelling. The S-plus
(StatSci Division, 1700 Westlake Ave. N., Suite 500,
Seattle WA 98109) GAM function was used to generate
relationships between each response variable (Table 1)
and the explanatory variables (Table 2) according to the
following specifications. For forest and lodgepole pres-
ence, a logit link was used to transform the mean of the
response to a binomial scale. For the continuous vari-
ables, the Poisson link was used to transform the data to
the scale of the response. A Poisson link was selected
after evaluation of mean-variance relationships for each
continuous response variable. A loess smoothing func-
tion (Venables & Ripley 1997) was chosen to summa-
rize the relationship between the predictors and the
response. The loess smoother fits a robust weighted
linear function to a specified window of data. In this
study, the default (0.5) window size was arbitrarily set
for all smoothed functions.

Partial residuals were graphically explored for unu-
sual patterns and outliers and the major outliers were
removed from the analyses. The functional relation-

ships between each explanatory variable and the respec-
tive response variables were then analyzed for potential
parametric fits following advice of Hastie & Tibshirani
(1990) and Yee & Mitchell (1991). If a potential para-
metric fit existed, piecewise and second- and third-order
polynomial functions were fitted to the data and as-
sessed from the relative degree of change to the residual
deviance (Cressie 1991). The piecewise functions re-
quire a pre-chosen placement of ’knots’ or breakpoints
within the range of the data at points where the relation-
ships distinctively changed. The knots split the data into
separate sections. A regression model is fitted to each
piece of data and joined at each knot (Chambers &
Hastie 1992). For this analysis, only variables with one
distinctive breakpoint were fitted, with the node speci-
fied from graphical characteristics.

All explanatory variables, including all potential
parametric fits, were run through a stepwise procedure
to determine the best-fit model for prediction (see Cham-
bers & Hastie 1992) using Akaike’s Information Crite-
rion (AIC) (Akaike 1973). To examine the effects of
different sources of satellite data, three stepwise proce-
dures were performed for each forest attribute, each
having the same set of explanatory variables but with a
different type of satellite data. One limitation of smoothed
functions obtained from GAMs is their inability to ex-
trapolate outside the range of the data used to build the
model. Therefore, values of the validation data set that
were outside the range of the model-building data set
were assigned the maximum/minimum value of the
respective variable in the model-building data set.

Table 2. Summary of explanatory variables used to model forest attributes in the Uinta Mountains, Utah, USA.

Variable Abrev. Type Resolution Source

Elevation(m) Elev Continuous 90 m DMA
Asp (°) - - - Derived from DMA

Asp1 Continuous 90 m Relative annual solar radiation (Swift 1976)
Asp2 Discrete 90 m 9 categories (see text for descriptions)
Asp3 Continuous 90 m Radiation/wetness index (Roberts & Cooper 1989)

Slope(%) Slp Continuous 90 m Derived from DMA
Precipitation (mm) Precip Continuous 90 m Downscaled from PRISM-yearly precipitation climate maps

(N. Zimmerman, unpubl. data)
Geology - - - Hintze (1980)

Geol(T) Discrete 1:500000 Timeframe (1-Precambrian, 2-Mississippian to Euocene, 3-Alluvium)
Geol(N) Discrete 1:500 000 Nutrients (1-sandstone and limestone, 2-sedimentary, 3-alluvial)
Geol(R) Discrete 1:500,000 Rock Type (1-sedimentary, 2-alluvial)

Easting East Continuous - UTM Easting coordinates
Northing North Continuous - UTM Northing coordinates
District District Discrete - National Forest Ranger Districts (1-Evanston, 2-Mountain

View, 3-Flaming Gorge, 4-Vernal, 5-Roosevelt, 6-Kamas,7-Duchesne)
TM-classified GAPveg Discrete 90 m GAP Analysis (Homer et al. 1997)
AVHRR AVHRR Continuous 1000 m NOAA (June 1990)
TM  - - - Landsat TM (June 1990/August 1991)

TM3 Continuous 30 m TM Band 3 (Red)
TM4 Continuous 30 m TM Band 4 (Near-infrared)
TM5 Continuous 30 m TM Band 5 (Mid-infrared)
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Model validation

An independent set of data was collected in the field
and compared to model predictions using error matrix
analyses for the discrete, binomial responses (forest and
lodgepole presence), and root mean square error (RMSE)
estimations for the continuous responses (basal area,
percent shrub, and snag density). RMSE was chosen as
a measure that combines both bias and variance in the
estimates, presented in units that have meaning to map
users. A systematic grid of 3000 m intervals was applied
to the Evanston District and used to select validation
sites. A 3000 m interval was selected as the maximum
amount of data that could be collected during one field
season. The grid was randomly placed within the district
boundary and field validation data collected from 96
points using standard FIA plot design and measurement
procedures (Anon. 1994).
The proportion correctly classified (PCC) was calcu-
lated by dividing the sum of the diagonal values of the
error matrix by the total points analyzed. A measure of
randomness, the kappa statistic (KHAT) (Cohen 1960),
was calculated to evaluate the effects of omission and
commission errors. KHAT ranges from – ∞ to 1, with
more accurate values closer to 1 and more ‘confused’
values closer to – ∞. Output from the binomial response
models was a probability value scaled from 0 to 1 for
each grid cell, with predictions closer to 1 indicating a
greater chance of forest and lodgepole presence. Z-tests
(corrected for multiple comparison with the Bonferroni
method) were used to test for significant differences in
PCC and KHAT values obtained using different satellite

data as predictor variables. For the continuous response
models, scatterplots were generated of field vs. pre-
dicted values to show, visually, the distribution of error,
and a RMSE was calculated as:

RMSE predicted observed n= ( )∑ – .2 (1)

Predicted values within ±15% of field values were con-
sidered accurate and used to estimate PCC.

Results

Model development and selection

Binary responses
For the forest and lodgepole responses, the models

including TM data had the lowest AIC value (Table 3).
Both TM and TM-classified data were significant con-
tributors to the forest and lodgepole presence models,
whereas the AVHRR variable was excluded from each
selected model (Table 3). Elevation and geology were
selected as significant predictors in all models of forest
and lodgepole presence except for the TM-classified,
forest presence model, where geology was replaced
with the slope parameter. Other significant variables
included precipitation in the forest presence models and
the UTM easting variable in the lodgepole presence
models (Table 3). For the forest presence response, the
TM model was similar to the AVHRR model, except
that precipitation was replaced by TM Band 5 (mid-

Table 3. Best-fit models (bold) by satellite imagery type for predicting forest and lodgepole pine presence in the Uinta Mountains,
Utah, USA. See Table 2 for variable descriptions.

Forest presence Pinus contorta presence
Predictor
variables TM AVHRR TM-classified TM AVHRR TM-classified

AIC 164.7 199.2 169.1 198.9 272.6 210.1

TM3 - N/A N/A  - N/A N/A
TM4 - N/A N/A poly(3) N/A N/A
TM5 lo N/A N/A - N/A N/A
AVHRR N/A - N/A N/A - N/A
GAPveg N/A N/A + N/A N/A +
Elev trpw trpw poly(2) poly(2) poly(2) poly(2)
Slp - - trpw - - -
Asp1 - - - - - -
Asp2 - - - - - -
Asp3  - - - - - -
East - - - - lo lo
North - - - - - -
Precip - lo - - - -
Geol(T) - - - - - -
Geol(N) + + - - - -
Geol(R) - - - + + +
District - - - - - -
poly = polynomial of order specified in parentheses; trpw = piecewise polynomial; lo = loess smoothing function with default window span of 0.5; + =
significant relationship; - = non-significant relationship.



20 Frescino, T.S. et al.

infrared) (Table 3).
The TM-classified model was similar to the lodgepole

AVHRR model, but had a slightly better fit (Table 3).
The primary difference between the two models was the
replacement of the UTM easting variable in the AVHRR
model by the TM Band 4 (near-infrared) variable in the
TM model (Table 3). The probability of lodgepole cover
was found to be highest at decreasing values of TM
Band 4 data, elevations between 2500 and 3200 m, and
on alluvial substrates (Fig. 1b).

Continuous responses

For all continuous responses except the AVHRR
snag density model, all variables were selected as
additively contributing to the model predictions (Table
4, Fig. 2). For the snag density model, the only variable
not included was geology. As with the binomial re-
sponse models, both parametric and smoothed functions
were significant in each model, with models based with
TM data having the lowest AIC values.

Fig 1. Explanatory variables se-
lected from stepwise procedures
as significantly contributing to the
respective binomial response vari-
ables (see Tables 3 and 4 for defi-
nitions). Each plot shows the rela-
tionship of the fitted function to
the response and scaled to zero.
The plots include approximate
95% pointwise SE bands. At the
base of eachplot is a univariate
histogram (rugplot) showing the
distribution of each observation.
(a) Forest presence TM model.
(b) Lodgepole presence TM
model.

Table 4. Best-fit models (AIC and D2) by satellite type for predicting basal area, % shrub cover, and snag density in the Uinta
Mountains, Utah. Variable names are described in Table 2.

Basal area % Shrub cover Snag density
Predictor
variables TM AVHRR TM-classified TM AVHRR TM-classified TM AVHRR TM-classified

AIC 8618.4 11198.7 9061.9 2983.9 3141.7 3085.1 4263.5 4640.7 4606.3
D2 43.3 29.6 45.0 30.7 30.1 32.1 43.5 39.9 41.1

TM3 lo N/A N/A lo N/A N/A lo N/A N/A
TM4 lo N/A N/A lo N/A N/A lo N/A N/A
TM5 lo N/A N/A lo N/A N/A lo N/A N/A
AVHRR  N/A lo N/A N/A lo N/A N/A lo N/A
GAPveg  N/A N/A + N/A N/A + N/A N/A +
Elev trpw trpw trpw lo lo lo poly(3) poly(3) poly(3)
Slp trpw lo lo lo lo lo lo lo lo
Asp1 lo - lo poly(2) poly(2) poly(2) lo lo lo
Asp2 - + - - - - - - -
Asp3 - - - - - - - - -
East lo poly(3) lo poly(3) poly(3) lo poly(3) poly(3) poly(3)
North lo poly(3) poly(3) lo poly(3) lo lo lo lo
Precip poly(2) poly(2) poly(2) poly(2) lo poly(2) lo lo poly(2)
Geol(T) - - + - - - - - +
Geol(N) + + - + + + - - -
Geol(R) - - - - - - + - -
District + + + + + + - + +
poly = polynomial of order specified in parentheses; trpw = piecewise polynomial; lo = loess smoothing function with default window span of 0.5; + =
significant relationship; - = non-significant relationship.
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The relationship of elevation to basal area and snag
density corresponded with the probability of forest and
lodgepole presence, with high values peaking between
2500 and 3200 m, whereas shrub cover gradually de-
clined with increasing elevations (Fig. 2). TM Bands 3
and 4 followed similar trends for each continuous re-
sponse, while basal area increased and snag density
slightly decreased with declining values of TM Band 5.
The relationship of slope with basal area and snag
density followed similar decreasing patterns, whereas
the relationship of slope with shrub cover showed an
initial increase up to 18% (Fig. 2). Precipitation tended
to have a greater positive effect on basal area than on
shrubs and snags. Basal area was greatest on alluvial
substrates, shrub cover greatest on shale substrates, and
snag density greatest on sedimentary rock types.

Basal area was higher at the northern and southern
extremes of the mountain range, shrub cover higher at
mid-latitude zones of the mountain range and snag
density higher on the western edge of the range. Basal
area was high in districts on the north slope, shrub cover
high in Mountain View, Flaming Gorge, and Vernal
districts, and snag density high in Kamas and Duchesne
districts on the western end of the range.

Validation

Accuracy of the models predicting forest and
lodgepole presence was high (Table 5). Differences in
accuracy were not significant among the three models
for either variate. RMSE values for estimates of basal
area ranged from 13.9 m 2 /ha for the TM-classified
model to 16.0 m2 /ha for the AVHRR model (Fig. 3a).
Sixty-three percent of the points fell within ±15% (11.5
m2 /ha) of the true value for the TM model, 55% for the
AVHRR model, and 67% for the TM-classified model.
There was little difference between RMSE values for
the models predicting shrub cover, with values averag-
ing 13.8%. Seventy-five percent of the points fell within
±15% of the true cover using TM data, 77% for the
AVHRR model, and 75% for the TM-classified model
(Fig. 3b.). RMSE for snag density ranged from 18.1

snags for the TM model to 20.2 snags for the AVHRR
model (Fig. 3c). Forty-nine percent of the points fell
within ±15% of the true snag count using TM data, 41%
including AVHRR data, and 54% with TM-classified
data.

Discussion

Generalized Additive Models

Clearly, vegetation communities do not exhibit ’nor-
mal’ (Gaussian) distribution patterns throughout the
environment (Austin et al. 1990, 1994); therefore, pre-
dictability is dependent on the flexibility and capability
of the analytical procedures used to model vegetation
distribution. GAMs, in contrast to some analytical pro-
cedures (e.g., ordination and linear regression models),
do not make a priori assumptions about underlying
relationships, thus allowing the data to drive the fit of
the model instead of the model driving the data. The
graphical nature of GAMs also allows for the opportu-
nity to visualize the additive contribution of each vari-
able to the respective response using smoothed func-
tions (Figs. 2, 3). Smoothed functions are capable of
fitting unusual variance patterns such as skewness and
bimodality that are often overlooked with standard lin-
ear models (Austin & Noy-Meir 1971). A limitation of
GAMs we encountered in this study was the uncertainty
associated with extrapolation of the smoothed func-
tions, particularly at the tails of the distribution. As
suggested by Hastie & Tibshirani (1990) and Yee &
Mitchell (1991), we fitted parametric functions to the
model whenever ‘statistically allowable’, thus constrain-
ing the behavior of the functions in the extreme ranges
of the data. Often this involved a subjective interpreta-
tion based on visual inspection of the data.

We found GAMs to be powerful exploratory tools
for detecting simple linear relationships as well as com-
plex patterns in forest attribute distribution, and tools
flexible enough for integrating both parametric and non-
parametric functions in the models. For example, most
of our models included at least one smoothed function
as a predictor variable, indicating a better model fit was
achieved using a nonlinear distribution. This supports
findings of other studies (Austin & Cunningham 1981;
Austin 1987; Margules & Stein 1989; Leathwick &
Mitchell 1992), where relationships of environmental
variables to plant species’ responses were not always
best described by Gaussian distributions.

Elevation was a significant predictor in all models.
This is not surprising in a mountainous environment like
Utah, where elevation, a surrogate for moisture and
temperature gradients (Barbour et al. 1987), is a driving

Table 5. Percent correctly classified (PCC) and estimates of
Kappa (KHAT) for TM, AVHRR and TM-classified models
predicting forest and lodgepole pine presence in the Uinta
Mountains, Utah.  Bold-faced values indicate highest accuracy.

Forest attribute Satellite type PCC KHAT

Forest TM 86.5 0.58
presence AVHRR 82.3 0.43

TM-classified 85.4 0.54

Pinus contorta TM 71.9 0.38
presence AVHRR 71.9 0.37

TM-classified 80.2 0.56



22 Frescino, T.S. et al.

Fig. 2. Explanatory variables
selected from stepwise proce-
dures as significantly contribut-
ing to the respective binomial
response variables (see Tables 3
and 4 for definitions). Each plot
shows the relationship of the fit-
ted function to the response and
scaled to zero. The plots include
approximate 95% pointwise SE
bands. At the base of eachplot is
a univariate histogram (rugplot)
showing the distribution of each
observation. (a) Basal area. (b)
% shrub cover. (c) Snag density.
see next page.

mechanism for vegetation distributions. The limitation
of using an indirect variable, such as elevation, as a
predictor variable is that the vegetation response is
limited to the characteristics of the species’ local envi-
ronment (Austin et al. 1984, Austin & Smith 1989).
Model effectiveness may therefore be limited when
applied to environments outside the range where the
model was developed.

The forest presence models indicated the additive
importance of geologic features (nutrients) and mois-
ture variables, such as total annual precipitation and the
spectral signatures of moisture (TM Band 5), along with

elevation. This is not surprising given that the essential
environmental gradients influencing vegetation produc-
tion are moisture, temperature, and nutrients (Barbour et
al. 1987). The difference between the lodgepole and
forest presence models was the added significance of
geographic location (UTM Easting coordinates) and
Band 4 (near-infrared) of the TM data in predicting
lodgepole presence. TM Band 4, which discriminates
green biomass, was a better predictor for lodgepole than
the moisture-related TM spectral Band 5 (mid-infrared).
This suggests the importance of spectral data for dis-
criminating highly disturbed or successional-stage for-
est types, such as lodgepole pine.
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The distribution of basal area, shrub cover, and snag
density within the Uinta Mountain range appeared to be
related to all environmental variables specified in the
initial model. Questions remain on the magnitude of
forest attribute response to each environmental gradient
and whether variables not represented in this study are
affecting vegetation structure. Other considerations in-
clude the impact of the human population on forest
diversity. Human intervention has introduced fragmen-
tation of vegetation communities from roads and clear-
cuts, and extensive habitat and diversity loss from hu-
man development, timber management, wildfire sup-
pression, and livestock grazing. These disturbances
strongly effect forest composition and can weaken the
relationship between predicted and actual forest at-
tributes.

Validation

Assessing model accuracy was not without ques-
tions. For validating discrete data sets, PCC provides a
measure of overall accuracy, but does not provide infor-
mation about omission and commission errors included
in the predictions. This study included coinciding Kappa
(KHAT) values, which provide a measure of improve-
ment of the model over random predictions, incorporat-
ing omission and commission errors (Cohen 1960). In

Fig. 2. (Cont.) Explanatory variables selected from stepwise procedures as significantly contributing to the respective binomial
response variables (see Tables 3 and 4 for definitions). Each plot shows the relationship of the fitted function to the response and
scaled to zero. The plots include approximate 95% pointwise SE bands. At the base of eachplot is a univariate histogram (rugplot)
showing the distribution of each observation. (a) Basal area. (b) % shrub cover. (c) Snag density.

general, the accuracy of forest and lodgepole presence
models was high, with PCC ranging from 82.3% to
86.5% and 71.9% to 80.2%, respectively. These values
are well within the range of accuracies estimated for
discrete cover-types (Edwards et al. 1998).

Error matrix calculations work well for discrete data
types, but are not appropriate for analyzing continuous
data. RMSE provided an estimate of model variance,
averaging 14.7 m2 /ha for basal area, 13.8% for shrub
cover, and 19.0 for number of snags. The scatterplots of
field reference vs. prediction displayed the distribution
of error in the data. In general, the models tended to
underpredict at high values of basal area, shrub cover,
and snag density and overpredict at locations sampled as
having no forest cover (Fig. 3). This bias between ob-
served and predicted values may be caused by the influ-
ence of ‘naughty noughts’, or zero values which, when
large numbers of zero values are included in the model
building data set, tend to distort the shape of the re-
sponse function (Austin & Meyers 1996). Overdispersed
data with additional zeros (from whatever cause) appear
common in ecological data sets; further research on this
topic is needed from both an ecological and a statistical
perspective (See Austin & Cunningham 1981; Austin et
al. 1994; Austin & Meyers 1996 for examples).
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Satellite data

A satellite data component was selected as signifi-
cant in all models except the forest and lodgepole pres-
ence models including AVHRR. This supports findings
that satellite data used in conjunction with environmen-
tal digital data enhances model predictions (Strahler et
al. 1979; Davis et al. 1991). The AVHRR component
did not contribute to the model-building process as
much as the TM-classified or TM data (Table 3, Table
4), and had lower accuracy when compared with our
validation data set (Table 5, Fig. 3). Spectral values

influenced by shadows or extreme moisture differences
may actually detract from useful information for predic-
tion. In a classified map, these values are discriminated
by ecological characteristics and nearby pixels and there-
fore enhance information extraction from the raw spec-
tral data. This may be a reason why the TM models in
most cases were less accurate than the TM-classified
models. Also, only three TM spectral bands (3, 4, and 5)
were included in the TM models for this study, whereas
the TM-classified cover map included all six bands (1,
2, 3, 4, 5, and 7) for classification procedures. Questions
remain on the effects of using different bands or combi-

Fig. 3. Scatterplots of field reference data vs. model predictions, including RMS values. The solid lines represent perfect correlation
between the predicted and reference values, and the dotted lines show user-defined acceptable deviations fromperfect correlation. (a)
Basal area with reference lines at +/– 11.5 m2/ha.  (b) % shrub cover with reference lines at +/– 15%. (c) snag density with reference
lines at +/– 15 snags.
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nations of bands in the model. For example, Franklin
(1986) found significant relationships between visible
reflectance bands (Bands 1, 2, and 3) and stand basal
area and leaf biomass for coniferous vegetation while
Ahern (1992) found significant relationships between
bands 7/4 and spruce-fir volume. Unfortunately, GAMs
are not effective at high dimensions, and modelling
approaches examining many variables simultaneously,
such as would be needed to analyze the interaction
among many different spectral bands, should be ex-
plored with caution.
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